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Figure 1: Comparison of accuracy dropping curve when increasing overall compression

level of KV cache for 3 presses and their composition with Think.

Introduction Method

e Used NVIDIA/KVPress to compose and evaluate eviction techniques,
such as StreaminglLLM and DuoAttention, with ThinK, a key-cache
dimensionality reduction technique.

Figure 2: Impact of ThinK composition on accuracy

e Various KV cache compression techniques exist that can
reduce memory consumption with long sequences.

e We investigate, compare, and compose KV compression

techniques across different compression levels. e Evaluated long-context capabilities of presses with the RULER 4K

benchmark across 13 different long context tasks. All experiments used

® We find that further compression with minimal accuracy the pretrained Llama 3.1 8B Instruct model running on PSC Bridges-2.

drop can be achieved by composing orthogonal presses.

Problem Statement Evaluation and Analvsis

Lo e Fig. 1 shows that composition may achieve higher accuracy vs. standalone
e KV-cache growth limits inference over long sequences, b hehave diff v with hioh S .
especlally under resource-constrained environments. o Fresses behave differently with high compression: sharp accuracy cli

e Standalone compression methods incur unacceptable (ThinK, DuoAttention) vs. steady decline (H20, Streamingl..M)

accuracy drops when the Compression rate 1s hlgh o Under hlgh Compression, COmpOSitiOn with ThinK = hlgher accuracy.

e Fig. 2 shows that composing presses at levels before their respective
Related Work ‘accuracy cliffs’ (e.g. ThinK(0.25) with DuoAttention(<0.5)) could allow

. e : for high levels of compression with minimal decrease 1n accuracy.
Eviction-based Compression

e Fig. 3 and 4 suggest that the effects of compression are not consistent

1. StreamingL.LLM: retains mnitial and recent tokens.
across task types.

2. H20: retains tokens w/ high averages attention weights. , L , ,
o Aggregation tasks are more resilient to compression than retrieval.

3. DuoAttention: combine retrieval and streaming heads.
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. ﬁ Dim-reduced Key 4. What if we compose more compression methods (quantization/merging)?
| 5. How does composition perform on different tasks (QA/summarization)?
StreaminglLLM ThinK . .
6. How does composition affect actual memory usage and inference speed?



